Xamonas Chegwé wrote:Read it. I was looking for something quite a bit meatier. As I said, not pop-sci. And something specifically concentrating on QM as opposed to physics and cosmology in general.
What I was hoping for was more the kind of book that someone studying a degree course in physics would be recommended for their first year QM primer. I have a knowledge of physics to A level standard and maths to undergraduate level, so I don't need the sums glossing over!
Any suggestions? Perhaps I should ask at RD.
Books? We don' need no stinkin' books! We've got teh interweebs! See if you can wrap your head around this jewel, I can't:
From:
http://www.lifesci.sussex.ac.uk/home/Jo ... uantum.htm
Deepening the quantum mysteries
The "central mystery" of quantum physics just got more mysterious. Experimenters from the United States and Austria have got together to provide a new demonstration of how light going through a "double slit" experiment seems to know before it sets out in its journey exactly what kind of traps have been set for it along the way.
This is a variation on the Young's slit experiment, familiar from school laboratory demonstrations of the wave nature of light. When a beam of monochromatic light is shone through two narrow holes in a screen, the light spreading out from the two holes interferes, just like ripples interfering on the surface of a pond, to produce a characteristic pattern on a second screen.
The mystery is that light can also be described as a stream of particles, called photons. The light source in a Young's slit experiment can be turned down to the point where it consists of individual photons going through the experiment, one after the other. If the spots of light made by individual photons arriving at the second screen (actually a photoelectric detector) are added together, they still form an interference pattern, as if each photon goes through both holes and interferes with itself on the way through the experiment. It was Richard Feynman who described this as "the central mystery" of quantum theory, and then corrected himself, saying that in fact it is "the only mystery". If you understood this, you would understand quantum physics -- but as Feynman also said, "nobody understands quantum mechanics" (The Character of Physical Law, BBC Publications, 1965).
The new demonstration of how incomprehensible the quantum world is has been made by Raymond Chiao, of the University of California, Berkeley, Paul Kwiat, of the University of Innsbruck, and Aephraim Steinberg, of the US National Institute of Standards and Technology, in Maryland. Their results were presented at a meeting in Nathiagali, Pakistan.
In fact, the team has carried out several tests of the stranger predictions of quantum theory, but the most dramatic is what they call the "quantum eraser". In this variation on the Young's slit theme, the experiment is first set up in the usual way, and run to produce interference. Quantum theory says that the reason why interference can occur, even if light is a stream of photons, is that there is no way to find out, even in principle, which photon went through which slit. The "indeterminacy" allows fringes to appear.
But then Chiao and his colleagues ran the same experiment with polarising filters in front of each of the two slits. Any photon going one way would become "labelled" with left-handed circular polarization, while any photon going through the other slit is labelled with right-handed circular polarization. In this version of the experiment, it is possible in principle to tell which slit any particular photon arriving at the second screen went through. Sure enough, the interference pattern vanishes -- even though nobody ever actually looks to see which photon went through which slit.
Now comes the new trick -- the eraser. A third polarising filter is placed between the two slits and the second screen, to scramble up (or erase) the information about which photon went through which hole. Now, once again, it is impossible to tell which path any particular photon arriving at the second screen took through the experiment. And, sure enough, the interference pattern reappears!
The strange thing is that interference depends on "single photons" going through both slits "at once", but undetected. So how does a single photon arriving at the first screen know how it ought to behave in order to match the presence or absence of the erasing filter on the other side of the slits?
All of these experiments were carried out using beams of individual photons, and there is no way in which the results can be explained by using classical physics. They lay bare the mysteriousness of quantum mechanics in all its glory, and in particular demonstrate its "non local" nature -- the way in which a photon starting out on its journey behaves in a different way for each experimental setup, as if it knew in advance what kind of experiment it was about to go through.
Don't worry if you don't understand this. Richard Feynman didn't, and he warned "do not keep saying to yourself, if you can possibly avoid it, 'But how can it be like that?' because you will go 'down the drain' into a blind alley from which nobody has yet escaped. Nobody knows how it can be like that."
"A philosopher is a blind man in a dark room looking for a black cat that isn't there. A theologian is the man who finds it." ~ H. L. Mencken
"We ain't a sharp species. We kill each other over arguments about what happens when you die, then fail to see the fucking irony in that."
"It is useless for the sheep to pass resolutions in favor of vegetarianism while the wolf remains of a different opinion."